Attributing and Verifying European and National Greenhouse Gas and Aerosol Emissions and Reconciliation with Statistical Bottom-up Estimates

AVENGERS Overview

A project funded by European Union's Horizon Europe research and innovation programme

Marko Scholze, Lund University ESA-EC Joint Earth System Science Initiative ESRIN, 23 November 2023

Coordinated by

Funded by the European Union

Some AVENGERS facts

- Horizon Europe project funded under the call on "Verification and reconciliation of estimates of climate forcers" (Cluster 5, Destination 1: Climate sciences and responses for the transformation towards climate neutrality).
- 42 months (01/2023 to 06/2026) and involves 15 partners (including 5 national UNFCCC reporting agencies) from 7 countries, total budget 5.9M Euro.
- 2 other projects funded under this call: EYE-CLIMA and PARIS

Part. No.	Participant organisation name	Country	8	ICOS ERIC	Finland
1 Coordinator	LUNDS UNIVERSITET (ULUND)	Sweden			
			9	UMWELTBUNDESAMT (UBA)	Germany
2	THE INVERSION LAB (iLab)	Germany	10	SVERIGES LANTBRUKS-UNIVERSITET (SLU)	Sweden
3	ISPRA	Italy	11	EMPA	Switzerland
4	RIVM	The Netherlands	12	SRON	The Netherlands
5	UNIVERSITAET HEIDELBERG (UHEI)	Germany	13 Co-Coordinator	STICHTING VU (VUA)	The Netherlands
6	CMCC	Italy	14	Chalmers University of Technology (Chalmer)	Sweden
7	TNO	The Netherlands	15	The Cyprus Institute (Cyl)	Cyprus

Scientific Advisory Board: M. Dowell (JRC), P. Friedlingstein (U Exeter) & S. Mikaloff-Fletcher (NIWA)

To reconcile reported GHG emissions with independent information from atmospheric observations using top-down methods and processbased models, aiming at reducing the most important uncertainties of national emission inventories

Variety of observation and model-based methods employed

Legend				
atm. inv.	Inversions of atmospheric observations			
CCFFDAS	Carbon Cycle Fossil Fuel DA system			
LSM	Land Surface Models			
data	Data driven model			
inventory	EFs and activity data			

Project Structure

WP8 for Hop-On partner The Cyprus Institute to extend the methodology to Eastern Mediterranean countries

Focus regions (case studies)

- AFOLU sector
 - Forestry: Sweden
 - Agricultural land use: Italy & The Netherlands
- Germany: largest economy in EU, UBA partner
- Switzerland: front-runner of topdown aided emission reporting
- Cyprus & MEME region: Hop-on objective
- EU+UK: GhG and aerosol (precursor) emissions of SO₂, OC (organic carbon), and BC (black carbon) and their uncertainy

Some science highlights...

- Multi-tracer atmospheric inversion systems for GHG and aerosol emissions estimation
 - Co-emitted species (NO₂, ¹⁴CO₂, δ 13C, δ D, alkanes)
 - Joint Black Carbon-CO₂ inversions

Name	Model	DA method	Application	Reference
CCFFDAS	TM3/CMAQ	4D-VAR	CO_2	Kaminski et al. (2022)
ICON-ART-CTDAS*	ICON	EnKF	CO_2 , CH_4 , N_2O	Schröter et al. (2018)
LOTOS-Euros	LOTOS-Euros	4D-VAR, EnKF	CH ₄ , N ₂ O [#] , aerosols	Jin et al. (2017)
LUMIA	TM5/Flexpart	4D-VAR	CO ₂ , CH ₄ , aerosols & BC [#]	Monteil and Scholze, (2021)
WRF-CTDAS*	WRF-Chem	EnKF	$CO_2, CH_4, N_2O^{\#}$	Dekker et al. (2019)
TRACE	WRF-Chem	EnKF	CO_2	Chen et al. (2019)

Some science highlights...

• Coupled fossil fuel carbon cycle data assimilation

- Evaluation of future infrastructures: OSSEs and QND studies for all three GhGs (CO₂, CH₄ & N₂O)
 - e.g. PRISMA, EnMAP, CO2Imager, CO2M, ICOS extension
 - Good coverage of neighbouring countries for national totals of a country
 - How does an in-situ network need to look like for estimating Italian GhG budget
 - What is the added value of CH4 isotopes

Some science highlights...

- Emission factor quantification for GHG flux estimation in the AFOLU sector using processbased DGVMs (ORCHIDEE, LPJ-GUESS) and forest management model (HEUREKA)
 - How can we better estimate CO2 emissions from the forestry sector with processbased bottom up models
 - Can we quantify Dutch CH4 emissions from organic and mineral soils using processbased bottom up models
 - What is the contribution of the agricultural sector to the Italian GhG budget from process-based bottom up models
- Comparison of GHG and aerosol radiative forcing
 - Using EC-Earth to calculate radiative forcing of aerosol emissions for a given year and country
- Development of a Flexible Inversion Tool for Inventory Compilers (FIT-IC) to use and in a way that non-atmospheric scientists can apply it

TOPAS-CH₄: A methane source attribution tool

Nov-15

- TOPAS services: TNO Operational
 Pollution Apportionment
 Services
- CH₄ service: daily updated simulations by LOTOS model of CH₄ and C₂H₆ concentrations over Europe
- Visualized on website: https://topas-ch4.tno.nl

Nov-21

Nov-19

- **Good practice guidelines** on how top-down emission estimation systems can support GHG inventories and the Global Stocktake (in collaboration with EYE-CLIMA).
- A Flexible Inversion Tool for Inventory Compiler for demonstrating the strengths and weaknesses in estimating GHG emissions, made available to national inventory compilers incl training events.
- Observation-based estimates of GHG (CO₂, CH₄, N₂O) and aerosol emissions and their uncertainties for European countries (with a specific focus on Germany, The Netherlands, Sweden and Switzerland such that they can be used as input in the respective GHG inventories).
- Improved estimates of uncertain emission factors used in the inventories, based on process modelling in ORCHIDEE and LPJ-GUESS of Sweden and Italy for the AFOLU sector.
- An evaluation of future observing systems (both satellite and in-situ) in terms of their potential to
 further reduce uncertainties in the estimated GHG and aerosol emissions and corresponding guidelines on
 the design of the networks.

Most importantly:

A better understanding of how the different communities work and what is needed to effectively work together among atmospheric scientists, processbased land surface modellers and inventory compilers!

THANK YOU!

https://avengers-project.eu

marko.scholze@nateko.lu.se